Symmetric periodic orbits near heteroclinic loops at infinity for a class of polynomial vector fields
Otros/as autores/as
Fecha de publicación
2006ISSN
0218-1274
Resumen
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an
open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial
vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools
for proving this result are, first, the existence in the phase portrait of a symmetry with respect
to a plane and, second, the existence of two symmetric heteroclinic loops.
Tipo de documento
Artículo
Lengua
Inglés
Palabras clave
Matemàtica
Páginas
11 p.
Publicado por
World Scientific Publishing
Citación
CORBERA SUBIRANA, Montserrat; LLIBRE, Jaume. "Symmetric periodic orbits near heteroclinic loops at infinity for a class of polynomial vector fields". A: International Journal of Bifurcation and Chaos, 2006, vol. 16, núm. 11, pàg. 3401-3410.
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Articles [1406]
Derechos
Electronic version of an article published as International Journal of Bifurcation and Chaos, 2006, vol. 16, núm. 11, pàg. 3401-3410. [10.1142/S0218127406016884] © [copyright World Scientific Publishing Company] [http://www.worldscientific.com/doi/abs/10.1142/S0218127406016884?journalCode=ijbc]
Tots els drets reservats