Hardy’s inequalities for monotone functions on partly ordered measure spaces
Otros/as autores/as
Fecha de publicación
2006ISSN
0308-2105
Resumen
We characterize the weighted Hardy inequalities for monotone functions in Rn
+. In
dimension n = 1, this recovers the standard theory of Bp weights. For n > 1, the
result was previously only known for the case p = 1. In fact, our main theorem is
proved in the more general setting of partly ordered measure spaces.
Tipo de documento
Artículo
Lengua
Inglés
Palabras clave
Anàlisi harmònica
Páginas
12 p.
Publicado por
Cambridge University Press
Citación
Arcozzi, Nicola, et al. "Hardy's Inequalities for Monotone Functions on Partly Ordered Measure Spaces." Proceedings of the Royal Society of Edinburgh Section A-Mathematics 136 (2006): 909-19.
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Articles [1389]
Derechos
(c) Cambridge University Press. The published version of the article: Arcozzi, Nicola, et al. "Hardy's Inequalities for Monotone Functions on Partly Ordered Measure Spaces." Proceedings of the Royal Society of Edinburgh Section A-Mathematics 136 (2006): 909-19 , is available at http://journals.cambridge.org
Tots els drets reservats