EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition
Visualitza/Obre
Altres autors/es
Data de publicació
2012ISBN
978-989-8565-33-4
Resum
Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret
or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode
decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method
to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare
the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural
networks. For both cases, the classification rate is improved about 20%.
Tipus de document
Objecte de conferència
Llengua
Anglès
Paraules clau
Alzheimer, Malaltia d'
Pàgines
7 p.
Publicat per
SciTePress - Science and Technology Publications
Citació
Gallego-Jutglà, E., Rutkowski, T. M., Cichocki, A., & Solé-Casals, J. (2012). EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition. Paper presented at the IJCCI 2012 - Proceedings of the 4th International Joint Conference on Computational Intelligence, 670-676
Nota
IJCCI 2012
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Documents de Congressos [174]
Drets
(c) SciTePress - Science and Technology Publications
Tots els drets reservats