Feature extraction approach based on fractal dimension for spontaneous speech modelling oriented to alzheimer disease diagnosis
Visualitza/Obre
Autor/a
Altres autors/es
Data de publicació
2013ISSN
0302-9743
Resum
Alzheimer's disease (AD) is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Spontaneous Speech. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis. Nowadays our feature set offers some hopeful conclusions but fails to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is scarce. In this work, the Fractal Dimension (FD) of the observed time series is combined with lineal parameters in the feature vector in order to enhance the performance of the original system.
Tipus de document
Objecte de conferència
Llengua
Anglès
Paraules clau
Alzheimer, Malaltia d'
Processament de la parla
Pàgines
8 p.
Publicat per
Springer
Citació
López-De-Ipiña, K., Egiraun, H., Sole-Casals, J., Ecay, M., Ezeiza, A., Barroso, N., . . . Martinez-De-Lizardui, U. (2013). Feature extraction approach based on fractal dimension for spontaneous speech modelling oriented to alzheimer disease diagnosis A: Lecture Notes in Computer Science, 7911 LNAI, pp. 144-151
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Documents de Congressos [174]
Drets
(c) Springer (The original publication is available at www.springerlink.com)
Tots els drets reservats