Show simple item record

dc.contributorUniversitat de Vic. Grup de Recerca en Bioinformàtica i Estadística Mèdica
dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributor.authorLópez de Maturana, Evangelina
dc.contributor.authorYe, Yuanging
dc.contributor.authorCalle, M. Luz
dc.contributor.authorRothman, Nathaniel
dc.contributor.authorUrrea Gales, Víctor
dc.contributor.authorKogevinas, Manolis
dc.contributor.authorPetrus, Sandra
dc.contributor.authorChanock, Stephen
dc.contributor.authorTardón, Adonina
dc.contributor.authorGarcía-Closas, Montserrat
dc.contributor.authorGonzález-Neira, Anna
dc.contributor.authorVellalta, Gemma
dc.contributor.authorCarrato, Alfredo
dc.contributor.authorNavarro, Arcadi
dc.contributor.authorLorente-Galdós, Belén
dc.contributor.authorSilverman, Debra T.
dc.contributor.authorReal, Francisco X.
dc.contributor.authorWu, Xifeng
dc.contributor.authorMalats i Riera, Núria
dc.date.accessioned2014-01-15T09:23:34Z
dc.date.available2014-01-15T09:23:34Z
dc.date.created2013
dc.date.issued2013
dc.identifier.citationde Maturana EL, Ye Y, Calle ML, Rothman N, Urrea V, et al. (2013) Application of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risk. PLoS ONE 8(12): e83745. doi:10.1371/journal.pone.0083745ca_ES
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10854/2633
dc.description.abstractThe relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.en
dc.description.sponsorshipThe work was partially supported by the Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III (G03/174, 00/0745, PI051436, PI061614, PI09-02102, G03/174 and Sara Borrell fellowship to ELM) and Ministry of Science and Innovation (MTM2008-06747-C02-02 and FPU fellowship award to VU), Spain; AGAUR-Generalitat de Catalunya (Grant 2009SGR-581); Fundaciola Maratode TV3; Red Tematica de Investigacion Cooperativa en Cancer (RTICC); Asociacion Espanola Contra el Cancer (AECC); EU-FP7-201663; and RO1-CA089715 and CA34627; the Spanish National Institute for Bioinformatics (www.inab.org); and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA. MD Anderson support for this project included U01 CA 127615 (XW); R01 CA 74880 (XW); P50 CA 91846 (XW, CPD); Betty B. Marcus Chair fund in Cancer Prevention (XW); UT Research Trust fund (XW) and R01 CA 131335 (JG).
dc.formatapplication/pdf
dc.format.extent11 p.ca_ES
dc.language.isoengca_ES
dc.publisherPublic Library of Scienceca_ES
dc.relationMEC/PN2008-2011/MTM2008-06747-C02-00
dc.relationAGAUR/2009-2014/2009SGR-581
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonsca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ca_ES
dc.subject.otherCàncerca_ES
dc.subject.otherGenèticaca_ES
dc.titleApplication of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risken
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0083745
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/publishedVersionca_ES
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES
dc.contribution.funderMinisterio de Ciencia e Innovación (España)
dc.contribution.funderGeneralitat de Catalunya. Agència de Gestió d'Ajuts Universitaris i de Recerca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint