Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorInternational Conference on Advances in Statistics (2012: Barcelona)
dc.contributor.authorLew, Sergio
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorCaiafa, Cesar F.
dc.contributor.authorBau i Macià, Josep
dc.date.accessioned2014-04-07T12:21:31Z
dc.date.available2014-04-07T12:21:31Z
dc.date.created2012
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/10854/2858
dc.description.abstractIn this work, we propose a copula-based method to generate synthetic gene expression data that account for marginal and joint probability distributions features captured from real data. Our method allows us to implant significant genes in the synthetic dataset in a controlled manner, giving the possibility of testing new detection algorithms under more realistic environments.en
dc.formatapplication/pdf
dc.format.extent3 p.ca_ES
dc.language.isoengca_ES
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonsca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.otherDependència (Estadística)ca_ES
dc.subject.otherDistribució (Teoria de la probabilitat)ca_ES
dc.titleA copula-based method for synthetic microarray data generationen
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint