Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorMediterranean Conference on Medical and Biological Engineering and Computing (13è : 2013: Sevilla)
dc.contributor.authorLopez-de-Ipiña, Karmele
dc.contributor.authorAlonso, Jesús B.
dc.contributor.authorBarroso, Nora
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorEcay-Torres, Miriam
dc.contributor.authorMartinez-Lage, Pablo
dc.contributor.authorZelarain, F.
dc.contributor.authorEgiraun, Harkaitz
dc.contributor.authorTravieso, Carlos M.
dc.date.accessioned2014-04-30T09:34:29Z
dc.date.available2015-04-30T23:05:00Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationK. Lopez-de-Ipiña, J. B. Alonso, N. Barroso, J. Solé-Casals, M. Ecay-Torres, P. Martinez-Lage, F. Zelarain, H. Egiraun, C. M. Travieso, “Spontaneous Speech and Emotional Response Modeling Based on One-Class Classifier Oriented to Alzheimer Disease Diagnosis”, XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 IFMBE Proceedings Volume 41, 2014, pp 567-570ca_ES
dc.identifier.isbn978-3-319-00846-2
dc.identifier.issn1680-0737
dc.identifier.urihttp://hdl.handle.net/10854/3014
dc.description.abstractThe purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.ca_ES
dc.formatapplication/pdf
dc.format.extent5 p.ca_ES
dc.language.isoengca_ES
dc.publisherSpringerca_ES
dc.rights(c) Springer (The original publication is available at www.springerlink.com)
dc.rightsTots els drets reservatsca_ES
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.subject.otherProcessament de la parlaca_ES
dc.titleSpontaneous Speech and Emotional Response modeling based on One-class classifier oriented to Alzheimer Disease diagnosisca_ES
dc.typeinfo:eu-repo/semantics/bookPartca_ES
dc.embargo.terms12 mesosca_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-319-00846-2_141
dc.relation.publisherversionhttp://link.springer.com/chapter/10.1007%2F978-3-319-00846-2_141
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint