Mostrar el registro sencillo del ítem
AUC-RF: A New Strategy for Genomic Profiling with Random Forest
dc.contributor | Universitat de Vic. Escola Politècnica Superior | |
dc.contributor | Universitat de Vic. Grup de Recerca en Bioinformàtica i Estadística Mèdica | |
dc.contributor.author | Calle, M. Luz | |
dc.contributor.author | Urrea Gales, Víctor | |
dc.contributor.author | Boulesteix, Anne-Laure | |
dc.contributor.author | Malats i Riera, Núria | |
dc.date.accessioned | 2014-05-19T10:52:52Z | |
dc.date.available | 2014-05-19T10:52:52Z | |
dc.date.created | 2011 | |
dc.date.issued | 2011 | |
dc.identifier.citation | Calle Rosingana, M. L., Urrea, V., Boulesteix, A., & Malats, N. (2011). AUC-RF: A New Strategy for Genomic Profiling with Random Forest. Human heredity, 72(2), 121-132. doi:10.1159/000330778 | ca_ES |
dc.identifier.issn | 0001-5652 | |
dc.identifier.uri | http://hdl.handle.net/10854/3058 | |
dc.description.abstract | Objective: Genomic profiling, the use of genetic variants at multiple loci simultaneously for the prediction of disease risk, requires the selection of a set of genetic variants that best predicts disease status. The goal of this work was to provide a new selection algorithm for genomic profiling. Methods: We propose a new algorithm for genomic profiling based on optimizing the area under the receiver operating characteristic curve (AUC) of the random forest (RF). The proposed strategy implements a backward elimination process based on the initial ranking of variables. Results and Conclusions: We demonstrate the advantage of using the AUC instead of the classification error as a measure of predictive accuracy of RF. In particular, we show that the use of the classification error is especially inappropriate when dealing with unbalanced data sets. The new procedure for variable selection and prediction, namely AUC-RF, is illustrated with data from a bladder cancer study and also with simulated data. The algorithm is publicly available as an R package, named AUCRF, at http://cran.r-project.org/. | ca_ES |
dc.description.sponsorship | This work was partially supported by grant MTM2008-06747-C02-02 from the Ministerio de Educacion y Ciencia (Spain), grant 050831 from the Marato de TV3 Foundation, grant 2009SGR-581 from the AGAUR-Generalitat de Catalunya and the LMU-innovativ Project BioMed-S | |
dc.format | application/pdf | |
dc.format.extent | 12 p. | ca_ES |
dc.language.iso | eng | ca_ES |
dc.publisher | Karger | ca_ES |
dc.relation | MEC/PN2008-2011/MTM2008-06747-C02-00 | |
dc.relation | AGAUR/2009-2014/2009SGR-581 | |
dc.rights | (c) Karger | |
dc.rights | Tots els drets reservats | ca_ES |
dc.subject.other | Genètica | ca_ES |
dc.subject.other | Gens | ca_ES |
dc.title | AUC-RF: A New Strategy for Genomic Profiling with Random Forest | ca_ES |
dc.type | info:eu-repo/semantics/article | ca_ES |
dc.identifier.doi | https://doi.org/10.1159/000330778 | |
dc.relation.publisherversion | http://www.karger.com/Article/Fulltext/330778 | |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | ca_ES |
dc.type.version | info:eu-repo/publishedVersion | ca_ES |
dc.indexacio | Indexat a WOS/JCR | ca_ES |
dc.contribution.funder | Ministerio de Ciencia e Innovación (España) | |
dc.contribution.funder | Generalitat de Catalunya. Agència de Gestió d'Ajuts Universitaris i de Recerca |