Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Bioinformàtica i Estadística Mèdica
dc.contributor.authorCalle, M. Luz
dc.contributor.authorUrrea Gales, Víctor
dc.contributor.authorBoulesteix, Anne-Laure
dc.contributor.authorMalats i Riera, Núria
dc.date.accessioned2014-05-19T10:52:52Z
dc.date.available2014-05-19T10:52:52Z
dc.date.created2011
dc.date.issued2011
dc.identifier.citationCalle Rosingana, M. L., Urrea, V., Boulesteix, A., & Malats, N. (2011). AUC-RF: A New Strategy for Genomic Profiling with Random Forest. Human heredity, 72(2), 121-132. doi:10.1159/000330778ca_ES
dc.identifier.issn0001-5652
dc.identifier.urihttp://hdl.handle.net/10854/3058
dc.description.abstractObjective: Genomic profiling, the use of genetic variants at multiple loci simultaneously for the prediction of disease risk, requires the selection of a set of genetic variants that best predicts disease status. The goal of this work was to provide a new selection algorithm for genomic profiling. Methods: We propose a new algorithm for genomic profiling based on optimizing the area under the receiver operating characteristic curve (AUC) of the random forest (RF). The proposed strategy implements a backward elimination process based on the initial ranking of variables. Results and Conclusions: We demonstrate the advantage of using the AUC instead of the classification error as a measure of predictive accuracy of RF. In particular, we show that the use of the classification error is especially inappropriate when dealing with unbalanced data sets. The new procedure for variable selection and prediction, namely AUC-RF, is illustrated with data from a bladder cancer study and also with simulated data. The algorithm is publicly available as an R package, named AUCRF, at http://cran.r-project.org/.ca_ES
dc.description.sponsorshipThis work was partially supported by grant MTM2008-06747-C02-02 from the Ministerio de Educacion y Ciencia (Spain), grant 050831 from the Marato de TV3 Foundation, grant 2009SGR-581 from the AGAUR-Generalitat de Catalunya and the LMU-innovativ Project BioMed-S
dc.formatapplication/pdf
dc.format.extent12 p.ca_ES
dc.language.isoengca_ES
dc.publisherKargerca_ES
dc.relationMEC/PN2008-2011/MTM2008-06747-C02-00
dc.relationAGAUR/2009-2014/2009SGR-581
dc.rights(c) Karger
dc.rightsTots els drets reservatsca_ES
dc.subject.otherGenèticaca_ES
dc.subject.otherGensca_ES
dc.titleAUC-RF: A New Strategy for Genomic Profiling with Random Forestca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1159/000330778
dc.relation.publisherversionhttp://www.karger.com/Article/Fulltext/330778
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccessca_ES
dc.type.versioninfo:eu-repo/publishedVersionca_ES
dc.indexacioIndexat a WOS/JCRca_ES
dc.contribution.funderMinisterio de Ciencia e Innovación (España)
dc.contribution.funderGeneralitat de Catalunya. Agència de Gestió d'Ajuts Universitaris i de Recerca


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint