Show simple item record

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Màster Universitari en Anàlisi de Dades Òmiques
dc.contributor.authorRoig Aubeso, Roger
dc.date.accessioned2018-06-18T17:30:45Z
dc.date.available2018-06-18T17:30:45Z
dc.date.created2016-09
dc.date.issued2016-09
dc.identifier.urihttp://hdl.handle.net/10854/5470
dc.descriptionCurs 2015-2016
dc.description.abstractThe development of new methods for inferring ancestral origins in human populations has atracted a renewed interest for human population geneticists for better understanding recent human evolutonary history or for correcting the presence of hidden population substructure in genome-wide association studies (GWAS). The algorithms for detecting population substructure present several problems such as the dependency on the assumptions of the algorithm, the type and number of considered DNA markers, the underlying demographic relationship among the considered populations and the sample size of the target populations. With this concern in mind, we have constructed an experimental model for testing the performance of currently algorithms applied for estimating population substructure which starts by designing two ideal prototypes of spatially structured populations (2D stepping stone and anisotropic). From each model we have generated a pool of 78 experimental datasets, simulating the genomic molecular diversity with Fastsimcoal2 under various migration rate conditions, performing the sampling of individuals and populations and selecting different filtering strategies: Minor Allele Frequency (MAF) and Linkage Disequilibrium (LD). Those 78 datasets (plink bed files) have been processed to evaluate the response of commonly applied algorithms to SNP data for quantifying individual population substructure: Principal Components Analysis (smartPCA), Multidimensional Scaling (MDS-PLINK), Spatial Ancestry Analysis (SPA), ADMIXTURE and SNMF. For those algorithms in which the output is a coordinate (PCA, MDS and SPA), we have evaluated the correlation (via Mantel and Procrustes tests) of these estimated coordinates with the geographic sampling coordinates of individuals in our original ideal artifacts. For ADMIXTURE and SNMF we have applied different algorithms for assessing the best K number of ancestries and we have applied CLUMPP sotware to compare their output matrices. This ideal prototype has enabled us to establish the robustness of the five algorithms, identify best performing algorithms and determine the impact of the conditions imposed on the results of these programs.es
dc.formatapplication/pdfes
dc.format.extent83 p.es
dc.language.isoenges
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es
dc.subject.otherAlgorismeses
dc.subject.otherGenètica de poblacions humaneses
dc.titleEvaluation of the performance of commonly applied global ancestry algorithms in complex spatial demographic scenarioses
dc.typeinfo:eu-repo/semantics/masterThesises
dc.description.versionDirector/a: Oscar Lao
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint