Polygenic Risk Score in complex diseases
Visualitza/Obre
Autor/a
Altres autors/es
Data de publicació
2018-09Resum
Motivation: Plenty genome-wide datasets are produced from complex diseases by
traditional GWAS studies, but they are limited. A new approach has emerged in the
last decade, the Polygenic Risk Scores (PRS), to combine several SNP into a single
predictor to try to explain the complex genetic behind diseases like Asthma or Autism
Spectrum Disorders.
Results: Here we analyse genome-wide data from these two diseases a compute PRS
with three different approaches, PLINK’s method, a machine learning approach
(biglasso) and a targeted-based method using SFARI database. We find that this kind of
analysis are quite complex like the diseases they try to predict, and PRS only explain a
very low percentage of the variance of the disease. The validation analysis we
performed show us that the parameters used to compute the PRS have to be optimize
using bigger datasets. We also used a machine learning approach (XGBoost) to impute
the data in certain analysis.
Tipus de document
Treball fi de màster
Versió del document
Supervisor/a: Juan R González
Director/a: M. Luz Calle
Llengua
Anglès
Paraules clau
Genomes
Malalties congènites
Pàgines
18 p.
Nota
Curs 2017-2018
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
Aquest document està subjecte a aquesta llicència Creative Commons
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/3.0/es/