Mostra el registre parcial de l'element

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Màster Universitari en Anàlisi de Dades Òmiques
dc.contributor.authorTomás Dazas, Laureano
dc.date.accessioned2019-03-05T18:30:36Z
dc.date.available2019-03-05T18:30:36Z
dc.date.created2018-09
dc.date.issued2018-09
dc.identifier.urihttp://hdl.handle.net/10854/5728
dc.descriptionCurs 2017-2018es
dc.description.abstractMotivation: Plenty genome-wide datasets are produced from complex diseases by traditional GWAS studies, but they are limited. A new approach has emerged in the last decade, the Polygenic Risk Scores (PRS), to combine several SNP into a single predictor to try to explain the complex genetic behind diseases like Asthma or Autism Spectrum Disorders. Results: Here we analyse genome-wide data from these two diseases a compute PRS with three different approaches, PLINK’s method, a machine learning approach (biglasso) and a targeted-based method using SFARI database. We find that this kind of analysis are quite complex like the diseases they try to predict, and PRS only explain a very low percentage of the variance of the disease. The validation analysis we performed show us that the parameters used to compute the PRS have to be optimize using bigger datasets. We also used a machine learning approach (XGBoost) to impute the data in certain analysis.es
dc.formatapplication/pdfes
dc.format.extent18 p.es
dc.language.isoenges
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es
dc.subject.otherGenomeses
dc.subject.otherMalalties congèniteses
dc.titlePolygenic Risk Score in complex diseaseses
dc.typeinfo:eu-repo/semantics/masterThesises
dc.description.versionSupervisor/a: Juan R González
dc.description.versionDirector/a: M. Luz Calle
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Aquest document està subjecte a aquesta llicència Creative Commons
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix