Show simple item record

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Màster Universitari en Anàlisi de Dades Òmiques
dc.contributor.authorBallestà López, Mireia
dc.date.accessioned2019-03-05T18:45:14Z
dc.date.available2019-03-05T18:45:14Z
dc.date.created2018-09
dc.date.issued2018-09
dc.identifier.urihttp://hdl.handle.net/10854/5729
dc.descriptionCurs 2017-2018es
dc.description.abstractThe main goal of this project is to validate and compare machine learning methods to perform GWAS analysis. This study worked with genomic data on Alzheimer’s disease (AD). The data obtained was imputed by the Michigan Imputation Server and pre-processed by a quality control at both SNPs and individual’s level. In order to reduce the dimensionality, SNPs were filtered using different Linkage-Disequilibrium (LD) thresholds (0.2, 0.4 and 0.6). Filtered data was then analysed by five machine learning statistical methods: logistic regression, random forest, k-nearest neighbours, Gradient Boosting Machine and, deep neural networks. The model performance were compared using AUC, sensitivity, specificity and F-measure to evaluate the predictive capacity or reliability of the models. In addition, best models were validated using KEGG pathways. Our conclusion is that best results are obtained when applying a LD threshold of 0.2. From all the five algorithms performed, GBM with a LD threshold 0.2 was seen to be the best model to predict AD based on AUC, sensitivity, specificity, F-measure and validating the results with KEGG pathways.es
dc.formatapplication/pdfes
dc.format.extent39 p.es
dc.language.isoenges
dc.rightsTots els drets reservatses
dc.subject.otherAprenentatge automàtices
dc.subject.otherAlzheimer, Malaltia d'es
dc.titleMachine learning methods in personalized medicine: application to genomic data in Alzheimer's diseasees
dc.typeinfo:eu-repo/semantics/masterThesises
dc.description.versionSupervisor/a: Juan Ramón González
dc.description.versionDirector/a: Josep M. Serrat
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint