Show simple item record

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Màster Universitari en Anàlisi de Dades Òmiques
dc.contributor.authorFlamen, Giles
dc.date.accessioned2024-01-30T08:51:09Z
dc.date.available2024-01-30T08:51:09Z
dc.date.created2023-08-10
dc.date.issued2023-09-10
dc.identifier.urihttp://hdl.handle.net/10854/7698
dc.descriptionCurs 2022-2023es
dc.description.abstractAbstract: Endocrine therapy (ET) combined with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is the standard treatment for metastatic estrogen receptor-positive (ER+) breast cancer. However, not all patients require this combination therapy upfront, and identifying those who would respond well to ET alone could save healthcare costs, reserving the CDK4/6i combination for ET-resistant patients, and delay the eventual need for chemotherapy. In this study, we integrated two independent bulk RNA sequencing datasets, one inhouse generated and one publicly available, and used differential expression analysis (DEA) followed by LASSO selection to identify potential biomarkers associated with estrogen response. In this study, different machine learning techniques were employed to create predictive gene signatures, and comparisons were made based on performance. Through external validation with diverse datasets, we established a neural network-based 27-gene signature capable of classifying ET-sensitive patients with F-scores of up to 0.75. While validation presented challenges, our model offers promise for personalized clinical decision-making, provided more suitable validation data can be obtained.es
dc.formatapplication/pdfes
dc.format.extent11 p.es
dc.language.isoenges
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.caes
dc.subject.otherCàncer -- Aspectes genèticses
dc.titleMachine learning-based gene expression signature for classification of endocrine therapy sensitivity in ER+ breast cancer patientses
dc.typeinfo:eu-repo/semantics/masterThesises
dc.description.versionAcademic tutor: Malu Calle Rosingana
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ca
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint