Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències, Tecnologia i Enginyeries
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Màster Universitari en Anàlisi de Dades Òmiques
dc.contributor.authorFigueiras, Ricardo Maia Pita
dc.date.accessioned2025-02-26T09:17:05Z
dc.date.available2025-02-26T09:17:05Z
dc.date.created2024-09-01
dc.date.issued2024-09-01
dc.identifier.urihttp://hdl.handle.net/10854/8632
dc.descriptionCurs 2023-2024es
dc.description.abstractMotivation: Liver cirrhosis is the primary risk factor for hepatocellular carcinoma (HCC), with current surveillance tests often failing to detect the disease during its curative stages. Extracellular vesicles (EVs) can carry multiple types of biological molecules, from diseased tissues such as tumors, and have gained traction recently as a promising source for biomarker discovery in liquid biopsy. Results: In this multicenter case-control discovery cohort, we targeted and captured hepatocyte-derived extracellular vesicles from patients’ plasma samples to identify omics biomarkers for detecting HCC across all stages, with a particular focus on early-stage cases. By leveraging recent advances in mass spectrometry and small-RNA sequencing to overcome common challenges in blood-derived EVs research, such as the low yield of biomolecules, we obtained results indicating that our targeted method effectively captures EVs involved in liver-related pathways. Using recursive feature elimination (RFE) and random-forest, a preliminary proteomic signature derived from a training dataset achieved an Area Under the Curve (AUC) of 0.74 in unseen test samples. A final multiomics panel, composed of six proteins identified through mass spectrometry, four microRNAs from small RNA-sequencing, and alpha-fetoprotein (AFP) measured by ELISA demonstrated robust generalizability across a dataset composed of samples from different cancer stages and cirrhosis aetiologies. The multiomic biomarker discovery strategy was further validated using RFE and random-forest models with random partitioning into training and testing sets, yielding promising performance results when applied to test subsets with HCC samples across all stages (mean-AUC: 0.85, mean-sensitivity: 0.8, mean-specificity: 0.81), as well as testing subsets composed solely of early-stage cases (mean-AUC: 0.81, mean-sensitivity: 0.67, mean-specificity: 0.81). These findings underscore the potential of using multiomics analysis of circulating hepatocyte-derived EVs to improve early detection of HCC in cirrhotic patients.es
dc.formatapplication/pdfes
dc.format.extent17 p.es
dc.language.isoenges
dc.rightsTots els drets reservatses
dc.subject.otherCirrosi hepàticaes
dc.subject.otherFetge -- Cànceres
dc.titleMultiomic profiling of circulating hepatocyte-derived extracellular vesicles for hepatocellular carcinoma detection in liver cirrhosises
dc.typeinfo:eu-repo/semantics/masterThesises
dc.description.versionAcademic tutor: Josep Jurado
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir